【公開日:2025.06.10】【最終更新日:2025.05.08】
課題データ / Project Data
課題番号 / Project Issue Number
24NU0231
利用課題名 / Title
Elucidation of Heat Transfer Characteristics of Magnetic Refrigeration System
利用した実施機関 / Support Institute
名古屋大学 / Nagoya Univ.
機関外・機関内の利用 / External or Internal Use
内部利用(ARIM事業参画者以外)/Internal Use (by non ARIM members)
技術領域 / Technology Area
【横断技術領域 / Cross-Technology Area】(主 / Main)加工・デバイスプロセス/Nanofabrication(副 / Sub)-
【重要技術領域 / Important Technology Area】(主 / Main)革新的なエネルギー変換を可能とするマテリアル/Materials enabling innovative energy conversion(副 / Sub)-
キーワード / Keywords
Active Magnetic Regenerator (AMR),膜加工・エッチング/ Film processing/etching
利用者と利用形態 / User and Support Type
利用者名(課題申請者)/ User Name (Project Applicant)
上野 藍
所属名 / Affiliation
名古屋大学大学院工学研究科
共同利用者氏名 / Names of Collaborators in Other Institutes Than Hub and Spoke Institutes
ARIM実施機関支援担当者 / Names of Collaborators in The Hub and Spoke Institutes
利用形態 / Support Type
(主 / Main)機器利用/Equipment Utilization(副 / Sub)-
利用した主な設備 / Equipment Used in This Project
報告書データ / Report
概要(目的・用途・実施内容)/ Abstract (Aim, Use Applications and Contents)
This study investigates the heat transfer characteristics of a magnetic refrigeration system, an emerging alternative to conventional vapor-compression cooling technologies. Utilizing the magnetocaloric effect, magnetic refrigeration offers environmentally friendly and energy-efficient cooling. The research focuses on the thermal behavior of the active magnetic regenerator (AMR), evaluating parameters such as magnetic field intinsity, heat exchange fluid flow rate, and magnetocaloric material regenerator geometry. Experimental and numerical analyses reveal key insights into the optimization of heat transfer within the system, contributing to the design of more effective and sustainable cooling solutions
実験 / Experimental
The experimental setup consists of a prototype magnetic refrigeration system equipped with an active magnetic regenerator (AMR) using gadolinium as the magnetocaloric material. A pair of permanent magnets provides a variable magnetic field, while a peristaltic pump circulates a heat transfer nanofluid through the regenerator. Temperature sensors and flow meters are used to monitor thermal performance and fluid dynamics. Experiments were conducted under varying magnetic field strengths, flow rates, and operating frequencies to assess their impact on heat transfer efficiency. Data were collected and analyzed to identify trends and optimize system parameters for improved cooling performance
結果と考察 / Results and Discussion
The experimental results demonstrate a clear correlation between magnetic field strength, fluid flow rate, and the heat transfer efficiency of the system. Increased magnetic field intensity enhanced the magnetocaloric effect, resulting in greater temperature span across the AMR. However, excessively high flow rates led to reduced thermal exchange due to insufficient residence time. The optimal performance was observed at moderate flow rates and cyclic frequencies. Additionally, the results highlighted the importance of proper synchronization between magnetic field application and fluid movement. These findings provide valuable insights for optimizing the thermal management and design of magnetic refrigeration systems.
図・表・数式 / Figures, Tables and Equations
その他・特記事項(参考文献・謝辞等) / Remarks(References and Acknowledgements)
成果発表・成果利用 / Publication and Patents
論文・プロシーディング(DOIのあるもの) / DOI (Publication and Proceedings)
口頭発表、ポスター発表および、その他の論文 / Oral Presentations etc.
特許 / Patents
特許出願件数 / Number of Patent Applications:0件
特許登録件数 / Number of Registered Patents:0件