【公開日:2025.06.10】【最終更新日:2025.05.13】
課題データ / Project Data
課題番号 / Project Issue Number
24IT0054
利用課題名 / Title
表面プラズモンによるアントラセン発光体を有する超分子ナノファイバーにおける励起子拡散の増強:蛍光顕微鏡による研究
利用した実施機関 / Support Institute
東京科学大学 / Science Tokyo
機関外・機関内の利用 / External or Internal Use
内部利用(ARIM事業参画者以外)/Internal Use (by non ARIM members)
技術領域 / Technology Area
【横断技術領域 / Cross-Technology Area】(主 / Main)加工・デバイスプロセス/Nanofabrication(副 / Sub)-
【重要技術領域 / Important Technology Area】(主 / Main)量子・電子制御により革新的な機能を発現するマテリアル/Materials using quantum and electronic control to perform innovative functions(副 / Sub)次世代ナノスケールマテリアル/Next-generation nanoscale materials
キーワード / Keywords
ナノワイヤー・ナノファイバー/ Nanowire/nanofiber,電子線リソグラフィ/ EB lithography,フォトニクス/ Photonics,膜加工・エッチング/ Film processing/etching
利用者と利用形態 / User and Support Type
利用者名(課題申請者)/ User Name (Project Applicant)
VACHA Martin
所属名 / Affiliation
東京科学大学物質理工学院材料系
共同利用者氏名 / Names of Collaborators in Other Institutes Than Hub and Spoke Institutes
ARIM実施機関支援担当者 / Names of Collaborators in The Hub and Spoke Institutes
Takaaki Umemoto
利用形態 / Support Type
(主 / Main)技術代行/Technology Substitution(副 / Sub)-
利用した主な設備 / Equipment Used in This Project
IT-038:電子ビーム露光装置
IT-006:走査型電子顕微鏡
IT-012:リアクテブイオンエッチング装置
報告書データ / Report
概要(目的・用途・実施内容)/ Abstract (Aim, Use Applications and Contents)
Exciton migration in optoelectronic materials plays an important role in communication, sensing and energy applications. Increasing the efficiency of the exciton transport is essential for the development of future high-performance devices. While enhancement of energy transfer by localized surface plasmon resonance has been studied, here we propose a novel approach, the use of surface plasmon polaritons generated by a gold nanohole array. Specifically, we aim to study the plasmon polariton-induced enhancement of exciton transport along supramolecular nanofibers formed by organic molecules containing anthracene luminescent cores. The nanofibers formed by hydrogen bonding are micrometers long and the anthracene cores form J-aggregates along the length of the nanofibers.
実験 / Experimental
Fabrication of the gold nanohole arrays:Nanoholes with a diameter of 250 nm and a depth of 40 nm in a rectangular arrangement (nanohole distance 500 nm) were fabricated on a gold substrate (100 nm thickness) by electron beam lithography under the following conditions:・Electron resist: 1000 nm thick ZEP 520A, spin-coated, pre-baked, cooled・Exposure conditions: EB lithography system (IT-038), 100 kV, 200 pA, dose 250 mC/cm2・Development and rinsing: xylene 60 s, IPA 40 s, N2 blow・Etching: Samco RIE-10NR (IT-012), reactive ion etching with CF4・Lift-off: DMAC and acetone at 130°C. Fabricated structure was confirmed by SEM (IT-006). Fluorescence microscopy experiments: Nanofiber samples were prepared by spin-coating on the nanohole array substrate. Fluorescence emitted from the nanofibers was measured using an inverted microscope (IX 71, Olympus). The samples were excited by an Ar-ion laser at 457 nm (Innova 70, Coherent). Fluorescence was collected by a dry objective lens (UMPlanFl 100×, N.A. 0.95, Olympus) and detected with an electron-multiplying (EM) CCD camera (iXon, Andor Technology).
結果と考察 / Results and Discussion
The exciton transport and its enhancement was studied on individual nanofibers by monitoring the spatial spread of fluorescence upon diffraction limited confocal excitation. The Fig. 1A shows the molecular structure of the compound which self-assembles into the supramolecular nanofibers, as seen in the fluorescence image in the Fig. 1B. Comparison of the spread of fluorescence in fibers deposited on glass and on the nanohole arrays, respectively, is shown in the example in Fig. 1C. The spread of fluorescence on the array is larger, and unlike on the glass it depends on the orientation angle q of the fibers with respect to the direction of the rectangular array. Analysis of the data provides exciton diffusion length which is summarized for a statistical ensemble of nanofibers in the Fig. 1D. Compared to the diffusion length on glass of approx. 200 nm, the diffusion length on the nanohole arrays can be enhanced up to more than 1000 nm for the optimal nanofiber orientation and position.
図・表・数式 / Figures, Tables and Equations
Figure 1. A – chemical structure of the compound; B- microscopic fluorescence image of the supramolecular nanofibers; C – laaser spot profile (bottom) and fluorescence image (top) of the fibers at different orientations, on glass (left) and nanoholes (right); D – distribution of the diffusion length obtained on nanofibers on nanohole arrays as a function of the nanofiber orientation.
その他・特記事項(参考文献・謝辞等) / Remarks(References and Acknowledgements)
成果発表・成果利用 / Publication and Patents
論文・プロシーディング(DOIのあるもの) / DOI (Publication and Proceedings)
口頭発表、ポスター発表および、その他の論文 / Oral Presentations etc.
特許 / Patents
特許出願件数 / Number of Patent Applications:0件
特許登録件数 / Number of Registered Patents:0件