

^{特集}フォーカス26

フォーカス 26 <第2 5 回>:成果事例クローズアップ(阪大複合機能ナノファウンダリ) 超高圧電子顕微鏡トモグラフィーの生物試料への応用

岡山大学医歯薬総合研究科 上岡 寛

大阪大学大学院生命機能研究科 藤田一郎,小賀智文,岡本嗣久 大阪大学超高圧電子顕微鏡センター 梶村直子,西田倫希,長谷川紀昭,鷹岡昭夫

(左から) 岡山大学医歯薬総合研究科 上岡 寛, 大阪大学大学院生命機能研究科 藤田一郎, 小賀智文, 岡本嗣久

(左から) 大阪大学超高圧電子顕微鏡センター 梶村直子,西田倫希

1. はじめに

大阪大学超高圧電子顕微鏡センターには 300 万ボルト の超高圧電子顕微鏡はじめ各種の電子顕微鏡があり,こ れらを活用して「ナノテクノロジー・ネットワーク」に 参画し,「阪大複合機能ナノファインダリ」の「ナノ計 測・分析」の研究領域において研究支援を実施していま す.世界最高の加速電圧を持つ超高圧電子顕微鏡は,厚 い試料を明るくかつ分解能よく観察できる世界無二の装 置であり,この特長は極微構造のトモグラフィー観察に 活かされ [1],世界の研究者から利用希望が寄せられてい ます.本センターで実施している平成 22 年度の支援件数 は 35 件あり,生物系試料と材料系試料がほぼ同数です. 超高圧電子顕微鏡を利用した研究支援は13件あり,その 過半が細胞生物学試料のトモグラフィー観察です.そこ で、本企画において、「超高圧電子顕微鏡トモグラフィー の生物試料への応用」について2件の支援研究「上岡寛: 骨細胞構造を反映した仮想骨の作成」、および、「藤田一郎、 小賀智文、岡本嗣久:大脳皮質神経細胞の微細形態の解明」 を紹介します.

なお、「骨細胞構造を反映した加速骨の作成」では、梶 村直子特任研究員が観察支援し、長谷川紀昭技術補佐員 がトモグラフィー用試料の作製に協力した.また、「大脳 皮質神経細胞の微細形態の解明」では、西田倫希特任研 究員が観察支援を行いました.

2. 骨微細構造を反映した仮想骨の作成

2.1 まえがき

脊椎動物の骨格系は,身体の場所ごとに力学的に必要 十分な強度をもつ様々な形状・大きさの骨を用意し,身

^{*}問い合わせ:

阪大複合機能ナノファウンダリ

^{〒 565-0047} 大阪府茨木市美穂ケ丘 8-1

産業科学研究所 阪大複合機能ナノファウンダリ

電話:06-6879-4309

E-mail: info-foundry@sanken.osaka-u.ac.jp

体の支持や運動などを行っています.このように骨が持 つ力学的合目的性は,骨の置かれた力学的な環境に応じ て骨の一部が吸収と新生を繰り返すことで維持されます. この骨のリモデリング過程において,骨細胞は機械的刺 激の感受やその刺激に応じた骨基質の成熟や石灰化の調 節など中心的な役割を果たすと考えられ,その働きが注 目されています [2][3][4][5][6].しかし,どのような機械 的刺激が骨細胞の応答を招き,骨リモデリングを開始す る引き金となるかは明らかになっていません.

機械的刺激が骨細胞ネットワークのどこにどのように 入力されているかを知るためには、これら骨細胞がおか れている力学的環境を調べることが重要です.そのため に骨細胞やその周囲の構造を高い分解能で解析する必要 があります.

骨細胞は細胞質からアクチンに富んだ細長い突起を伸 ばして、ギャップ結合を介したネットワークを作ってい ることが分かっています.骨細胞はその成熟の過程で周 囲にハイドロキシアパタイトや炭酸カルシウムなどを沈 殿させるため、骨細胞や突起が存在する場所は硬組織か ら取り残された空白となり、それぞれ骨小腔と骨細管と 呼ばれています.しかし、これらの骨細胞や突起は、そ の周囲の石灰化した基質の硬さゆえに構造解析が難しく、 これまで骨突起の力学的負荷様式を議論できる分解能で はなされていません.

2.2 研究の内容

本研究では,骨細胞の周囲が骨小腔および骨細管によ る非常に複雑な微細構造を形成している点に着目し,骨 細胞およびその周囲基質の三次元構造解析を行い,コン ピューター上にこれら微細構造を反映した仮想骨を作成 して有限要素解析を行うことにより,骨細胞に流体剪断 応力がかかった場合の応力局在部位を検討し,骨細胞の 機械的刺激感受機構の解明を目指しました.骨細管の径 は 50-410nm であるため,分解能が数百 nm 程度の共焦 点レーザー顕微鏡では補正が必要となり,正しい構造解 析はできませでした [7]. そこで超高圧電子顕微鏡を用 いた電子線トモグラフィーによる三次元構造解析を試み ました.電子線トモグラフィーは二次元情報しか持たな い投影像からコンピューター計算により三次元情報を回 復する手法です.本研究では,得られた三次元構造に対 して応力シミュレーションすることを目的としているた め,数100nm厚の複数の切片にまたがった骨細胞をコ ンピューター上で積層する,通常の中高圧電子顕微鏡を 用いた連続トモグラフィーでは,切片と切片の不連続な つなぎ目が応力局在部位と判定されてしまいます.電子 線の透過能は加速電圧が高いほど大きくなるため,厚い 試料でも像質の劣化が少ない超高圧電子顕微鏡トモグラ フィーでは数μm厚の切片からより多くの構造情報を一 度に得ることができ,つなぎ目のない細胞体を含む骨細 胞ネットワークの三次元構造が得られると期待できます.

本研究では、16日齢ニワトリ胚頭蓋骨を標本としま した. 試料作製に際し, 出来るだけ厚みのある標本の三 次元構造を得るために,厚くてもスライスしやすい標本 作り、骨細胞以外の基質のコントラストを下げる工夫も 行いました.まず,骨表面に存在する細胞の除去と,ハ イドロキシアパタイト結晶により観察用の標本が薄切し にくくなることを防ぐ目的で 1mM collagenase と 5mM EDTAにより処理し、3%パラホルムアルデヒドで固定し ました.またウランや鉛などの重金属による通常の電子 染色では,基質の電子密度が高くなりすぎ,1µm厚の標 本でも基質のコントラストから突起の走行を確認するこ とはできませんでした. 未脱灰の石灰質とコラーゲン繊 維を電子染色することなく、骨細胞および突起表面を選 択的に電子染色する目的で、固定後の標本に対し2%プ ロタゴール染色液を用いて48時間の鍍銀染色を行いまし た. 鍍銀染色を施した標本を光学顕微鏡で観察したとこ ろ, 銀粒子の析出により骨細胞ネットワークが確認でき たため、さらに銀粒子の析出がどこで起こっているかを 特定するために, 鍍銀染色標本から 70nm 厚の超薄切片 を作成し、ウラン、鉛による二重染色を施して 100kVの 加速電圧で観察しました(図1).主にコラーゲン繊維で

図1 鍍銀染色した標本の超薄切片像. A:骨基質中の骨細胞. Nは核を表す. B:骨突起. スケールバー:A=1µm, B=200nm.

図2 超高圧電子顕微鏡による投影像.スケールバーは 10µm を示す.

構成される周囲の基質のなかに、骨細胞の核や細胞体が 存在するのが確認できます.また銀粒子の析出は、細胞 と周囲基質との間に多くみられることが確認されました (図1A 矢印).骨細胞の突起も観察され、銀粒子の析出は 細胞突起と周囲基質に見られることが分かりました(図 1B 矢印).これにより、鍍銀染色した標本の銀粒子の析 出を追うことで、骨細胞の膜を示すことが出来ます.

この鍍銀染色法による骨細胞の選択的染色の成功のお かげで,骨基質のコラーゲン繊維や石灰質の高い電子密 度に妨げられることなく骨細胞のネットワークを撮影出

図3 超高圧電子線トモグラフィーによる骨細胞の輪郭抽出図. スケールバーは 10µm を示す.

来ることになり、電子線トモグラフィーに供する標本は、 通常の超高圧電子顕微鏡観察で用いる試料より更に厚い 6μmの切片を観察した場合でも像質の高い投影像を得る ことに成功しました.これはより広範囲の骨細胞ネット ワークを構造解析するために有利です.

超高圧電子顕微鏡の加速電圧が 2MV, 倍率が 2000 倍 で撮影したとき,投影像シリーズの一部を図2に示しま す.銀染色された骨細胞や突起の走行とネットワークな どが詳細に観察されています.また切片の厚みが 3µm の 場合,±60度に傾斜した際の電子線が透過する実効厚は 2 倍の 6µm になりますが,像質の劣化が少ない投影像が 撮影できます(図2の最初と最後の投影像).

図3が超高圧電子顕微鏡トモグラフィー法により得ら れた仮想骨の一例です.ほぼ完全な細胞体を含み、そこ から伸展する複数の突起が確認できます.またそれらの 突起同士が結合し、ネットワークを形成している様子が 高い解像度で観察できました.

2.3 今後の展開

骨細胞の細胞膜を選択的に染色することで,骨細胞の 突起が形成するネットワークを数μmの厚みにわたって 高い解像度で三次元構造解析する手法を確立できました. 今後は,周囲の骨組織との境界をより明らかにする選択 的な電子染色法の技術的な改良,トモグラフィー傾斜像 系列取得時の情報欠落領域に由来する分解能の異方性の 補正などが必要であると思われます.これらの改良を基 に,実存する骨の微細構造を反映した仮想骨をコンピュー ター上に作成し,本課題の目的を達成したいと考えてい ます.

3. 大脳皮質神経細胞の微細形態の解明 ~霊長類大脳皮質標本への超高圧電子顕微鏡法 の適用~

3.1 まえがき

サルの大脳皮質は、細胞の分布、入出力結合、発現分 子種、機能が異なる、50以上の領域に分かれる.これら の大脳皮質領域に共通して、細胞の70%以上を占めるの は興奮性神経細胞である錐体細胞である.異なる領域に 存在する錐体細胞の樹状突起の形態(一次突起の数,枝 分かれの頻度、樹状突起の広がり)は異なり[8]、その生 後発達過程も異なる[9][10][11].

錐体細胞の樹状突起にはスパイン(棘)と呼ばれる小 突起が存在する.一つのスパインには通常一つまたは少 数個のシナプスがついている.スパインの形や大きさ, さらに樹状突起上での分布は,神経回路の結合パターン を決定する重要な要素である.本研究では,樹状突起形 態の領域間相違の解明をさらに進める目的で,一次視覚 野(V1野)と側頭葉視覚連合野(TE野)の第3層錐体 細胞の基底樹状突起のスパインの形態の解析を行った.

樹状突起スパインの多くはその頭部直径が光学限界の 0.2 ミクロン以下であり、スパインの柄の直径は、ほとん どの場合 0.1 ミクロン以下である.これらの微小構造を 精度良く解析するには、電子顕微鏡を用いた解析が必要 である.そこで、まず、サル大脳皮質錐体細胞に蛍光色 素を細胞内注入することで染色可視化する手法を開発し た. 続いて, この切片に超高圧電子顕微鏡トモグラフィー 法を適用する手法を開発した. これらの新たに開発した 技術を用いて, 樹状突起の三次元構造を再構成し, スパ インの形態解析を行った.

3.2 大脳皮質神経細胞の高効率染色法の開発

分子細胞生物学的手法の適用が困難な霊長類において, 神経細胞の樹状突起形態を調べる際に良く使われている のは,古典的な組織学的手法であるゴルジ法である.し かし,この方法は,どの細胞が染まるかは偶然にまかせ るしかなく,また十分な数の染色成功例を得ることが難 しい.

オーストラリアの Centre for Cognitive Neuroscience の Guy Elston 博士は過去,軽度にホルマリン固定した大 脳組織を用いて蛍光色素を高効率で細胞内注入する方法 を開発してきた.2005-2010年の5年間,われわれは Elston 氏との共同研究を行い,この技術を完成させ,サ ルの大脳皮質の錐体細胞の形態およびその発達過程の解 明を行った [9][10][11].

図4はその方法の概略を示す.4%パラフォルム溶液で 心臓灌流固定した大脳をとりだす.この固定は通常の組 織学研究に行われる際に比べ軽度にとどめる.目的とす る脳部位をトリミングし、白質をとりのぞき、大脳皮質 のみをガラス板の間に挟んで平坦化する.一日の後固定 の後、平坦化したブロックを 300 ミクロン厚のスライス へと薄切する(図4上段).

図4 パラホルムアルデヒド固定脳への蛍光色素注入法 [12][13]

スライスは大脳皮質表面に対して平行に切られてい る.すなわち,大脳皮質の層構造に平行である.目的と する層(本研究の場合は第3層)を含むスライスを DAPI (4,6-diamidino-2-phenylindole)溶液に漬け,細胞核を染 色する(図4A).DAPIで標識された細胞核を手がかりに, 蛍光色素ルシファーイエロー(LY)を含むガラス微小管 を,神経細胞に刺入し,LYを注入する(図4B).その後, LY に対する免疫組織化学染色を行うことで,褪色するこ とのない永久標本を得ることができる(図4C)[12].

細胞内へのLY 注入は,動物を固定液で灌流したあと1 週間以内だけ可能である.しかし,本技術を十分に修得 すると,2名または3名によって,この期間に1,000 個 から2,000 個の神経細胞を染色することが可能である. 図 4D-F は,V1 野,TE 野,前頭葉連合野(PFC)におい て染色した細胞の様子を示す.樹状突起野の大きさは, V1 野が一番小さく,TE 野,PFC 野の順で大きくなる. 高次の領野にいくほど,単一の神経細胞がカバーする大 脳皮質の面積が大きい,すなわち,多くの入力を受ける ようになっている [8][9][10].

3.3 スパイン形態の超高圧電子顕微鏡トモグラフィー による三次元再構築

光学顕微鏡を用いたスパインの観察結果を裏づけるた めに、これらの微小構造を精度良く定量解析するには、 電子顕微鏡を用いた解析が必要である.通常の電子顕微 鏡標本から再構築しようとすれば、ほんの短い樹状突起 の断片であっても、何十枚から百枚を超す連続切片を作 成し、三次元再構成を行わなくてはならない. 高度の技 術と大きな労力が要求される上に、切片ごとに伸縮度合 いが異なることから、こうしてできた再構成像の精度は 期待ほどには高くない.

超高圧電子顕微鏡 (HVEM) は、4 ミクロン厚の切片を 観察する能力があるため、樹状突起の向きが切片面に平 行になるような標本が得ることができれば、上記の問題 を解決できる.そこで、われわれはまず、注入した LY を、 光変換法を用いてジアミノベンチジン発色させた.細胞 内色素注入を行った切片を 0.05% 3,3'-diamino benzidine tetra- hydrochloride (DAB; in 0.1 M PB) 中 に、4 ℃ で 30 分以上浸漬し、DAB を切片内部に浸透させた.その 後、切片をスライドグラス上に置き、切片の上に同濃度 の DAB 溶液を数滴垂らし、LY に対する励起光 (430nm 近傍の青色光)を照射した.DAB はオスミウム好性のため、 DAB で染色されている細胞は、引き続いて行う四酸化オ スミウムによる固定過程で強調され、電子顕微鏡で観察 することが可能となった [13].

3.4 大脳皮質領野によるスパイン形態の違い

V1 野と TE 野それぞれの 3 層錐体細胞の基底樹状突起 の断片の 3 次元再構成像を示す(図 5). V1 野細胞の 14 個のスパイン, TE 野細胞の 33 個のスパインの頭部の体 積は,それぞれ,0.056 ± 0.031 µm³,0.069 ± 0.046 µm³(平均±標準偏差)であった. TE 野のスパインの方が,

図 5 V1 および TE 野の樹状突起スパインの超高圧電子顕微鏡による解析 (左)超高圧電子顕微鏡トモグラフィー法を用いて 3 次元再構成した樹状突起の断片 (右)スパインサイズ.平均値,標準偏差ともに TE 野の方が V1 よりも大きい (*p*<0.01; bootstrap test) V1 野のスパインに比べて,平均体積が大きく,大きさの ばらつき(標準偏差)が大きかった (*p*<0.01; bootstrap test).

3.5 まとめ

大脳皮質視覚路の初段である V1 野と最終段である TE 野の錐体細胞の形態を比較すると, TE 野の基底樹状突起 は,根元での本数が多く,枝分かれが多く,長くのび広 い皮質領域をカバーする.さらに,TE 野細胞の基底樹状 突起上に存在する総スパイン数は V1 野細胞とくらべ,お よそ7倍も多い [8][9][10].これらの相違に加えて,個々 のスパインの平均体積と分布のひろがりに違いがあり, TE野細胞のスパインは V1 野のそれに比べて大きく,かつ, ばらつきがあることが明らかとなった.

スパインの大きさは、そのスパインを介するシナプス 伝達強度に相関する.また、複数の神経細胞からなる回 路の情報容量は、そこに含まれるシナプスの数とシナプ ス伝達強度の多様性に比例する [14].TE 野錐体細胞が V1 錐体細胞に比べて、スパインの数が多く、スパインの サイズ(したがってシナプスの伝達強度)に多様性を持っ ていることを示した本研究の結果から、同じ数の神経細 胞からなる局所神経回路を考えた場合、TE 野の回路は V1 野の回路に比べて、大きな情報容量を持っていると推 定される.

4. おわりに

超高圧電子顕微鏡は,厚さが3~5µmの細胞組織を 立体観察するのに威力を発揮する装置であり,上記の研 究ではまさにこの条件に該当していることを示している. さらに,超高圧電子顕微鏡はトモグラフィー観察を簡便 に行えるように,ユーセントリック試料ホルダーや自動 フォーカシング機構が近年整えられた.今後,超高圧の 三次元電子顕微鏡として研究支援の柱となると考えてい る.

本研究支援は文部科学省「先端研究施設共用イノベー ション創出事業」に基づいて実施され、立体形態学によ る貴重な知見が得られている.執筆頂いた上岡寛准教授, 藤田一郎教授にお礼を申し上げると共に、支援推進にご 尽力頂いた超高圧電子顕微鏡センターの各位に感謝しま す.

参考文献

[1] A. Takaoka, T. Hasegawa and H. Mori "Microscopic tomography with ultra-HVEM and applications" Ultramicroscopy, 108, 230-238, (2008)

[2] H. Kamioka, K. Sumitani, K. Tagami, Y. Miki, K. Terai, Y. Hakeda, M. Kumegawa, and T. Kawaya (1994) Biochem. Biophys. Res. Commun. 204, 519-524.

[3] Y. Mikuni-Takagaki, Y. Kawai, M. Satoyoshi, E. Kawano, Y. Suzuki, T. Kawase, S. Saito, (1995) J Bone Miner Res 57, 231-242.

[4] E.M. Aarden, E.H. Burger, and P.J. Nijweide (1994) J. Cell Biochem 55, 287-299.

[5] EH. Burger, J. Klein-Nulend, A. van der Plas, and P.J. Nijweide (1995) J Nutr 163, 115-119.

[6] E.H. Burger and J. Klein-Nulend (1999) FASEB J 13, s101-112.

[7] Y. Sugawara, H. Kamioka, T. Honjo et al, (2005) Bone 36, 877-883.

[8] G.N. Elston, J. Neurocytol. 31, 317-335, 2002

[9] G.N. Elston, T. Oga, I. Fujita, J. Neurosci. 29, 3271-3275, 2009

[10] G.N. Elston, T. Oga, T. Okamoto, J. Fujita, Cereb. Cortex 20, 1398-1408, 2010

[11] G.N. Elston, T. Okamoto, T. Oga, I. Fujita, Brain Res. 1316, 35-4, 2009

[12] 小賀智文,岡本嗣久,藤田一郎「標的神経細胞の樹 状突起の可視化:(I) 軟固定大脳皮質への細胞内色素注入 法」脳 21 12(4), 71-76, 2009

[13] 岡本嗣久,小賀智文,藤田一郎「標的神経細胞の樹 状突起形体の可視化(II):様々な細胞種への応用と超高 圧電子顕微鏡観察」脳 21 13(1),85-91,2010

[14] M. Chiklovskii, B.W. Mel, K. Svodoba, Nature 431 (2004): 782-788.

(大阪大学超高圧電子顕微鏡センター,鷹岡昭夫)